Une nouvelle famille structurale: Les titanoniobates et titanotantalates $A_2Nb_6TiO_{18}$ et $A_2Ta_6TiO_{18}$

GILBERT DESGARDIN, CATHERINE ROBERT, DANIEL GROULT ET BERNARD RAVEAU

Groupe de Cristallographie et Chimie du Solide, Laboratoire Associé au C.N.R.S. n° 251, Université de Caen-Esplanade de la Paix, 14032 Caen Cedex, France

Received December 22, 1976; in revised form March 7, 1977

De nouveaux oxydes ternaires $A_2M_6\text{TiO}_{18}$ (A = Rb, Cs; M = Ta, Nb) ont été synthétisés par action des oxydes M_2O_5 et TiO₂ et des carbonates A_2CO_3 . Ils cristallisent dans le système hexagonal, avec des paramètres a et c voisins respectivement de 7,5 et 8,2 Å. Les densités observées 4,38 et 4,78 pour les composés du niobium et 6,62 et 6,93 pour ceux du tantale, impliquent un motif $A_2M_6\text{TiO}_{18}$ par maille. La structure de ces composés, déterminée dans le groupe $P\overline{3}m1$, à partir des 64 premières réflexions des spectres de poudre X, soit 190 *hkl*, a été affinée jusqu'à des valeurs du facteur R_1 , calculé sur les intensités, comprises entre 0,06 et 0,08. Le réseau hôte peut être décrit à partir d'une unité structurale de base de composition (M_6O_{24}) constituée de 3 × 2 octaèdres joints par les arêtes et les sommets, et caractérises par des distances M-O comprises entre 1,8 et 2,2 Å. La parenté de ces phases avec les structures bronze hexagonal de tungstène et pyrochlore est discutée.

New ternary oxides A_2M_6 TiO₁₈ (A = Rb, Cs; M = Ta, Nb) have been synthesized by reaction between M_2O_5 and TiO₂ oxides and A_2CO_3 carbonates. They crystallize in the hexagonal system in a cell of dimensions a and c near 7.5 and 8.2 Å, respectively. There is one formula unit in the cell, in good agreement with the observed densities 4.38 and 4.78 for A_2Nb_6 TiO₁₈, 6.62 and 6.93 for A_2Ta_6 TiO₁₈. The structure has been determined from powder diffraction patterns, from the 64 first reflections (i.e., 190 hkl), and refined to R_1 values ranging from 0.06 and 0.08. It can be described from a basic unit of composition (M_6O_{24}) formed of 3×2 octahedra of oxygen atoms, sharing edges and corners, with M-O distances ranging from 1.8 and 2.2 Å. Relations with the hexagonal tungsten bronze and pyrochlore-type structures are discussed.

Introduction

Les études récentes des niobates et tantalates hexagonaux de formulation $A_3M_8O_{21}$ (1-3), mettent en évidence l'existence d'un nouveau motif structural de composition M_6O_{24} constitué de 3 × 2 octaèdres joints entre eux par les arêtes et les sommets. Dans ces composés, les motifs M_6O_{24} sont associés suivant e par les sommets de leurs octaédres et latéralement dans le plan (001) par l'intermédiaire d'octaèdres MO_6 d'axe ternaire parallèle à c. L'association de ces motifs directement par les sommets de leurs octaèdres dans le plan (001) et par l'intermédiaire d'octaèdres MO_6 d'axe ternaire parallèle à c suivant cette dernière direction peut également être envisagée. Une telle charpente devrait permettre d'accueillir en insertion des ions monovalents de plus grande taille, tels que le rubidium et le césium. Le présent travail est donc relatif à la synthèse et à l'étude structurale de nouveaux oxydes ternaires de niobium et de tantale de formulation $A_2M_7O_{18}$ dans lesquels A = Rb, Cs et M = Ta ou Nb et Ti.

Synthese chimique et caracterisation

La synthèse des composés $A_2M_7O_{18}$ a été réalisée par chauffage en creuset de platine à

Composition	a (Å) ±0,004	c (Å) ±0,008	V(Å) ³	d_{obs} ± 0.05	$d_{\rm calc}$
Rb,Nb,TiO	7,529	8,194	402,24	4,38	4,39
Rb,Ta,TiO	7,512	8,231	402,23	6,62	6,58
Cs ₂ Nb ₆ TiO ₁₈	7,533	8,189	402,42	4,78	4,78
Cs ₂ Ta ₆ TiO ₁₈	7,513	8,227	402,15	6,93	6,97

TABLEAU I

l'air, à des températures comprises entre 1150 et 1250°C, des mélanges intimes de carbonate A_2CO_3 et d'oxydes Nb₂O₅ ou Ta₂O₅ et TiO₂, pris dans les proportions stoechiométriques. Quatre composés, $A_2Nb_6TiO_{18}$ et $A_2Ta_6TiO_{18}$ (A = Rb, Cs) ont été ainsi obtenus. Ils se présentent sous la forme d'une poudre blanche finement cristallisée, et leurs diffractogrammes ont été indexés dans une maille hexagonale de paramètres a et c voisins respectivement de 7,5 et 8,2 Å (Tableau I); les densités observées pour ces phases impliquent un motif $A_2M_2O_{18}$ par maille.

Etude structurale

Dans les conditions où nous avons opéré, nous n'avons pas pu obtenir de cristaux de dimension utilisable. Les mesures d'intensité ont donc été faites au moyen d'une diffractomètre à poudre Philips, avec la radiation CuKa. La Fig. 1 donne l'aspect du diffractogramme X pour le composé Rb₂Ta₆TiO₁₈. Les calculs d'intensité ont été effectués pour chacun des composés sur les 64 premières réflexions visibles, avec ou sans superposition, soit environ 190 khl, à l'aide d'un programme d'affinement sur les intensités mis au point au laboratoire. Au cours de ces calculs, les facteurs de diffusion de Rb⁺, Cs⁺, Nb⁵⁺, Ta⁵⁺, Ti⁴⁺ ont été corrigés de la dispersion anomale. Les distances réticulaires des plans hk0 qui impliquent une valeur du paramètre "a" de la maille hexagonale voisine de celle observée pour les bronzes hexagonaux 4, WO3 décrits par Magneli (4), incitent à penser que l'enchaînement des octaèdres MO₆ dans le plan (001) est voisin de celui observé pour les octaèdres WO₆ dans ces composés. En

Atome		A	(<i>M</i> , Ti) ^b	(<i>M</i> , Ti) ^b	0 ₁	O ₂	Ο,
Position		2(<i>d</i>)	1(b)	6(<i>î</i>)	6(<i>i</i>)	6(<i>i</i>)	6(i)
Rb ₂ Nb ₆ TiO ₁₈	x	0,333	0	0,1696(5)	0,447(2)	0,854(2)	0,124(2)
$(R^c = 0,069)$	z	0,665(2)	0,5	0,1468(3)	0,155(4)	0,128(3)	0,358(3)
	B (Å) ²	3,1(3)	1,0(4)	0,5(1)	2,0(9)	2,5(7)	0,9(8)
Rb,Ta,TiO18	x	0,333	0	0,1702(3)	0,447(2)	0,860(2)	0,130(2)
(R = 0,079)	z	0,650(2)	0,5	0,1481(5)	0,167(4)	0,110(4)	0,353(4)
	B (Å) ²	3,2(4)	1,0(3)	1,0(1)	1,2(9)	2,1(9)	2,0(1)
Cs2Nb6TiO18	x	0,333	0	0,1700(4)	0,447(1)	0,861(2)	0,120(1)
(R = 0,063)	z	0,632(2)	0,5	0,1457(6)	0,160(4)	0,110(3)	0,370(4)
	B (Å) ²	2,4(1)	1,2(3)	0,3(1)	1,0(9)	4,0(8)	4,0(9)
Cs,Ta,TiO,,	x	0,333	0	0,1683(4)	0,447(2)	0,861(2)	0,130(2)
(R = 0.065)	z	0,628(2)	0,5	0,1503(6)	0,157(4)	0,115(4)	0,359(5)
	B (Å) ²	2.0(2)	1.0(4)	1.0(1)	0.8(9)	4.0(9)	0.3(9)

TABLEAU II

^a Les écarts types sont donnés entre parenthèses.

^b Répartition statistique.

 $^{c}R = \sum (I_{0} - I_{c}) / \sum I_{0}.$

revanche, la formulation de ces phases, l'absence d'isotypie relative aux réflexions hkl (l \neq 0), ainsi que la valeur du paramètre c, de l'ordre de 8,2 Å, nettement supérieure à celle rencontrée pour la structure bronze hexagonal, sont en faveur d'un arrangement des octaèdres MO_6 suivant c très différent. L'existence de blocs d'octaèdres M_6O_{24} associés suivant l'axe c par l'intermédiaire d'octaèdres MO₆ d'axe ternaire parallèle à c, peut rendre compte de différence. Dans cette cette hypothèse de travail, compte tenu des dimensions relatives des différents ions et de l'absence d'extinction systématique, cinq groupes d'espace sont possibles: P3, P3, P321, P3m1, P3m1. Les calculs ont d'abord été conduits dans le groupe $P\overline{3}m1$, pour lequel les contraintes sur les coordonnées atomiques sont les plus élevées. L'origine étant choisie en 3m1, le niobium et le titane (ou le tantale et le titane), compte tenu de leurs tailles très voisines, ont été distribués de façon statistique sur les sites 6(i) et 1(b) du groupe considéré, les ions A^+ (Rb⁺ ou Cs⁺) et les oxygènes étant positionnés respectivement en 2(d) et 3 fois 6(i). Plusieurs cycles d'affinement portant successivement sur les coordonnées des atomes métalliques puis des oxygènes, et sur les facteurs d'agitation thermique, conduisent pour les quatre composés à des valeurs du facteur R, calculé sur les intensités ($R_{I} = \sum I_{0}$ $-I_c)/\sum_{I_c}$ comprises entre 0,06 et 0,08.

Les positions atomiques et les facteurs de température correspondants sont rassemblés dans le Tableau II. A titre d'exemple, nous avons regroupé dans le Tableau III les intensités observées et calculées pour le composé Rb₂Ta₆TiO₁₈. Une occupation préférentielle des sites 1(b) par le tantale, analogue à celle rencontrée dans le cas des tantalates $A_{3}Ta_{8-1}M_{1}O_{21}(2)$ a été envisagée: elle conduit toujours à une légère augmentation du facteur de confiance. Des affinements effectués dans les groupes P3, P3, P321 et P3m1, afin de libérer les contraintes sur les coordonnées, ne permettent pas d'améliorer sensiblement le facteur R et conduisent du toute facon à des positions atomiques très voisines. Compte tenu

DESGARDIN ET AL.

TABLEAU III

Valeurs des intensités observées	S ET CALCULÉES POUR $Rb_2Ta_6TiO_{18}$
----------------------------------	--

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,6 0,2 4,9 8,0 0,1
$ \begin{bmatrix} 1 0.0 & 26.9 & 28.7 & 3 0.4 \\ 1 0.1 \\ 1 0.1 \\ 1 0.1 \\ 1 0.1 \\ 1 0.1 \\ 1 0.1 \\ 1 0.1 \\ 1 0.1 \\ 1 0.1 \\ 1 0.1 \\ 1 0.1 \\ 1 0.1 \\ 1 0.1 \\ 1 0.1 \\ 1 0.2 \\ 1 0$	5,6 0,2 4,9 8,0 0,1
$ \begin{bmatrix} 1 0.1 \\ 1 0.1 \\ 1 0.1 \end{bmatrix} = 12.8 = 12.5 = 20.5 \\ 2 0.5 = 20.5 \\ 0 0.2 = 4.0 = 3.2 = 20.5 \\ 0 0.2 = 4.0 = 3.2 = 20.5 \\ 1 1.0 = - 0.1 = 32.1 \\ 1 0.2 \\ 1 0.2 \end{bmatrix} = 38.5 = 42.2 = 20.5 \\ 2 0.1 = 10.2 \\ 1 0.2 \end{bmatrix} = 38.5 = 42.2 = 20.5 \\ 2 38.5 = 42.2 = 23.1 \\ 1 0.2 = 38.5 = 42.2 = 23.1 \\ 1 0.2 = 38.5 = 42.2 = 23.1 \\ 1 0.2 = 38.5 = 42.2 = 23.1 \\ 2 0.0 = 15.2 = 15.6 = 23.2 \\ 2 0.0 = 15.2 = 15.6 = 23.2 \\ 2 0.0 = 15.2 = 15.6 = 23.2 \\ 2 0.0 = 15.2 = 15.6 = 23.2 \\ 2 0.0 = 15.2 = 15.6 = 23.2 \\ 2 0.0 = 15.2 = 15.6 = 23.2 \\ 2 0.0 = 15.2 = 15.6 = 23.2 \\ 2 0.0 = 15.2 = 15.6 = 23.2 \\ 2 0.0 = 15.2 = 15.6 = 23.2 \\ 2 0.0 = 15.2 = 15.6 = 23.2 \\ 2 0.0 = 10.0 = 10.4 = 44.4 = 1.1 \\ 2 2.6 = 20.7 \\ 2 0.2 = 28.0 = 27.5 = 00.6 \\ 2 1.0 = 30.6 = 32.5 \\ 1 0.3 = 90 = 7.7 = 21.5 \\ 2 1.0 = 30.6 = 32.5 \\ 2 1.0 = 30.6 = 32.5 \\ 2 1.0 = 30.6 = 32.5 \\ 2 1.0 = 30.6 = 33.6 \\ 3 0.0 = 0.5 = 0.5 = 41.2 \\ 1 .1 = 0.2 = 0.2 = 10.6 \\ 1 .1 = 1.5 = 2.2 = 60.0 = 3.6 \\ 3 0.0 = 0.5 = 0.5 = 41.2 \\ 1 .1 = 30.5 = 30.6 \\ 3 0.0 = 0.5 = 0.5 = 41.2 \\ 1 .1 = 50.0 = 30.5 \\ 3 0.0 = 0.5 = 0.5 = 41.2 \\ 1 .1 = 50.0 = 30.5 \\ 3 0.0 = 33.4 \\ 0 .1 = 30.5 \\ 3 0.0 = 33.4 \\ 0 .1 = 30.5 \\ 3 0.0 = 33.4 \\ 0 .1 = 30.5 \\ 3 0.0 = 33.4 \\ 0 .1 = 30.5 \\ 3 0.0 = 33.4 \\ 0 .1 = 30.5 \\ 3 0.0 = 33.4 \\ 0 .1 = 30.5 \\ 3 0.0 = 33.4 \\ 0 .1 = 30.5 \\ $	5,6 0,2 4,9 8,0 0,1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,2 4,9 8,0 0,1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,2 4,9 8,0 0,1
$ \begin{bmatrix} 1 & 1.0 & - & 0.1 & 3 & 2.1 \\ 1 & 0.2 \\ 1 & 0.2 \\ 1 & 0.2 \\ 0 & 0 & 15,2 & 15,6 & 2.2. \\ 2 & 0.0 & 15,2 & 15,6 & 2.3.2 \\ 2 & 0.1 & 15,2 & 15,6 & 2.3.2 \\ 2 & 0.1 & 15,2 & 15,6 & 2.3.2 \\ 2 & 0.1 & 15,2 & 15,6 & 2.3.2 \\ 2 & 0.1 & 15,2 & 15,6 & 2.3.2 \\ 2 & 0.1 & 15,2 & 15,6 & 2.3.2 \\ 2 & 0.1 & 15,2 & 15,6 & 2.3.2 \\ 2 & 0.1 & 15,2 & 15,6 & 2.3.2 \\ 2 & 0.1 & 15,2 & 15,6 & 2.3.2 \\ 2 & 0.1 & 100,0 & 104,1 & 40.3 \\ 1 & 1.2 & 4,0 & 4,4 & 41.1 \\ 0 & 0.3 & 16,1 & 16,6 & 14.1 \\ 0 & 0.3 & 16,1 & 16,6 & 14.1 \\ 0 & 0.3 & 16,1 & 16,6 & 14.1 \\ 0 & 0.3 & 16,1 & 16,6 & 14.1 \\ 0 & 0.3 & 16,1 & 16,6 & 14.1 \\ 0 & 0.3 & 0.5 & 16,1 & 15,6 & 2.7 & 3.2 & 23.5 \\ 1 & 0.3 & 0.3 & 2.3 & 14 \\ 1 & 1.0 & 3,0 & 3,2 & 31.4 \\ 1 & 1.8 & 1.3 & 31.6 \\ 1 & 1.3 & 5,4 & 4.9 & 10.6 \\ 1 & 1.5 & 2.2 & 60.0 & 3.6 \\ 1 & 1.5 & 2.2 & 60.0 & 3.6 \\ 1 & 1.5 & 2.2 & 60.0 & 3.6 \\ 1 & 3.6 & 1.5 & 2.2 & 60.0 & 3.6 \\ 1 & 3.6 & 1.5 & 2.2 & 60.0 & 3.6 \\ 1 & 3.6 & 30.5 & 30.5 \\ 3 & 0.0 & 0.5 & 0.5 & 41.2 \\ 1 & 2.2 & 30.5 & 30.5 \\ 3 & 0.0 & 0.5 & 0.5 & 41.2 \\ 1 & 2.2 & 50.3 \\ 3 & 0.1 & 30.5 & 30.5 \\ 3 & 0.0 & 33.4 & 0.5 \\ 3 & 0.0 & 33.4 & 0.5 \\ 1 & 0.4 & 3.3 & 3.1 & 50.1 \\ 1 & - & 0.1 & 12.7 \\ 3 & 0.2 & 3.0 & 2.6 & 40.4 \\ 3 & 3.3 & 3.1 & 50.1 \\ 1 & - & 0.1 & 12.7 \\ 3 & 0.2 & 3.0 & 2.6 & 40.4 \\ 3 & 3.6 & 2.7 & 24.4 \\ 1 & 3.1 & 32.6 & 20.6 \\ 2 & 1.3 & 16,1 & 15,1 & 41.3 \\ 1 & 40.6 & 5.4 & 5.2 & 43.1 \\ 3 & 40.6 & 6,3 \\ \end{bmatrix}$	0,2 4,9 8.0 0,1
$ \begin{bmatrix} 1 0.2 \\ 1 0.2 \\ 1 0.2 \\ 1 0.3 \\ 1 1.1 \\ 0.9 \\ 0.1 \\ 1.1 \\ 0.9 \\ 0.1 \\ 0.1 \\ 0.0 \\ 0.1 \\ 0.1 \\ 0.0 \\ 0.1$	0,2 4,9 8.0 0,1
$ \begin{bmatrix} 10.2 \\ 11.1 \\ 0.0 \\ 15.2 \\ 15.2 \\ 10.0 \\ 15.2 \\ 15.2 \\ 15.6 \\ 23.2 \\ 200 \\ 15.2 \\ 15.6 \\ 23.2 \\ 200 \\ 20.1 \\ 20.1 \\ 20.1 \\ 20.1 \\ 20.1 \\ 20.1 \\ 20.1 \\ 20.1 \\ 20.2 \\ 28,0 \\ 27,5 \\ 20.2 \\ 28,0 \\ 27,5 \\ 20.2 \\ 28,0 \\ 27,5 \\ 20.2 \\ 28,0 \\ 27,5 \\ 20.2 \\ 28,0 \\ 27,5 \\ 20.2 \\ 28,0 \\ 27,5 \\ 20.2 \\ 28,0 \\ 27,5 \\ 20.2 \\ 28,0 \\ 27,5 \\ 20.6 \\ 21.1 \\ 0.2 \\ 0.2 \\ 15.2 \\ 10.7 \\ 20.7 \\ 20.7 \\ 20.7 \\ 20.7 \\ 20.7 \\ 20.7 \\ 20.7 \\ 20.7 \\ 20.7 \\ 20.7 \\ 32.5 \\ 10.3 \\ 10.1 \\ 11.3 \\ 54 \\ 4.4 \\ 4.9 \\ 10.6 \\ 1.5 \\ 2.2 \\ 10.6 \\ 1.5 \\ 2.2 \\ 10.6 \\ 1.5 \\ 2.2 \\ 10.6 \\ 1.5 \\ 2.2 \\ 10.6 \\ 1.5 \\ 2.2 \\ 10.6 \\ 1.5 \\ 2.2 \\ 10.6 \\ 1.5 \\ 2.2 \\ 10.6 \\ 1.5 \\ 2.2 \\ 10.6 \\ 1.5 \\ 2.2 \\ 10.6 \\ 13.6 \\ 1.5 \\ 2.2 \\ 10.6 \\ 13.6 \\ 1.5 \\ 2.2 \\ 10.6 \\ 13.6 \\ 1.5 \\ 2.2 \\ 10.6 \\ 13.6 \\ 1.5 \\ 2.2 \\ 10.6 \\ 13.6 \\ 1.5 \\ 2.2 \\ 10.6 \\ 13.6 \\ 1.5 \\ 2.2 \\ 10.6 \\ 13.6 \\ 1.5 \\ 2.2 \\ 10.6 \\ 13.6 \\ 1.5 \\ 2.2 \\ 10.5 \\ 10.4 \\ 10.4 \\ 10.4 \\ 10.4 \\ 10.4 \\ 10.4 \\ 10.4 \\ 10.4 \\ 10$	4,9 8.0 0,1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,9 8,0 0,1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8,0 0,1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8,0 0,1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8,0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8,0 0,1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8,0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3,4
$ \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 0 & 3 \\ 2 & 0 & 3 \\ 3 & 0 & 1 \\ 3 & 0 & 1 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 7,7 & 7,3 & 142 \\ 3 & 0.5$	
$\begin{bmatrix} 20.3 \\ 20.3 \\ 30.1 \\ 30.1 \end{bmatrix} = \begin{bmatrix} 30.5 \\ 30.5 \\ 23.3 \\ 50.0 \end{bmatrix} = \begin{bmatrix} 30.5 \\ 30.5 \\ 30.5 \\ 30.1 \\ 30.1 \end{bmatrix} = \begin{bmatrix} 31.5 \\ 60.1 \\ 60.1 \\ 60.1 \\ 33.4 \\ 60.1 \end{bmatrix} = \begin{bmatrix} 2.7 \\ 60.1 \\ 60.1 \\ 60.1 \\ 33.4 \\ 33.4 \\ 33.4 \\ 33.4 \\ 33.4 \\ 33.4 \\ 33.4 \\ 33.4 \\ 33.4 \\ 33.4 \\ 33.4 \\ 33.4 \\ 33.4 \\ 50.1 \\ - \\ 0,1 \\ 12.7 \\ - \\ 0,1 \\ 12.7 \\ - \\ 30.2 \\ 3$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{bmatrix} 1 & 2.3 \\ 2 & 2.1 \end{bmatrix}$ 16,1 15,1 4 1.3 4,3 40.6 6,3 6,3	
	5.8
	5,6
1.4 7.2 6.0 33.0 - 0.0 60.2	
	0.0
1,1,1 $1,0$ $0,8$ $2,2,5$ $2,6$ $2,0$ $4,2,2,7$	0,0
20.4 14.3 14.9 42.0 1.7 1.1 30.7	
22.2 1.0 0.6 31.5 30.7 3,6	3,6
30.3 27 23 13.5 107 107 52.1	
$30.\overline{3}$ 2,7 2,3 42.1 10,7 10,5 2.5.1	
31.2 00.8 24.1 00.8	0,2
[3.2] $[3.2]$ $[3.2$	0.7
0.5 - 0.2 23.4	0,2
10.5 12.6 $1,7$ $1,5$ 10.8 1.0	1.1
10.5 16.4 15.4 33.2 51.4	-,-
40.1 42.2 13.4 40.1 242 23.4	
124 503 57 57 54	
	5,1
4 0.2 14.4 3,6 2,0 2 2.7 7	5,1
1 1.5 16,1 14,0 5 1.0 33,5 3.5	5,1
31.3 30.6 43.3 3,0	5,1
$31.3 \ 30.6 \ - \ 34.3 \ - \ 34.3 \ - \ 34.3 \ - \ 34.3 \ - \ - \ - \ - \ - \ - \ - \ - \ - \ $	5, I 3,3

FIG. 2. (a) Feuillet $(M_6O_{15})_n$ des composés $A_2M_7O_{18}$ vu en projection sur le plan x0y. (b) Squelette $(W_3O_9)_n$ des bronzes hexagonaux vu en projection sur le plan x0y.

du nombre plus élevé de variables, les différences observées ne peuvent être considérées comme significatives.

Description de la structure. Relations avec les structures pyrochlore et bronze hexagonal de tungstene

La charpente de la structure peut être décrite comme celle des composés $A_3M_8O_{21}$ (1-3) à partir d'unités de base constituées de 2 \times 3 octaèdres joints entre eux par les arêtes et les sommets (Fig. 2a). Ces blocs, de composition M_6O_{24} , sont liés entre eux, latéralement, dans le plan (001) par les sommets de leurs octaèdres (Fig. 2a) formant des feuillets de composition $(M_6O_{15})_n$. La géométrie de ces derniers mérite une comparaison avec le squelette $(W_3O_9)_n$ des bronzes hexagonaux de tungstène (4) (Fig. 2b): les couches $(M_6O_{15})_n$ peuvent être considérées, aux déformations près des octaèdres MO_6 , comme constituées de deux couches $(M_3O_9)_n$ de type bronze hexagonal, associées par les côtés de leurs octaèdres; chaque couche $(M_3O_9)_n$ se déduit alors, en projection sur (001), de la couche adjacente par une rotation de 60° autour de

FIG. 3. Association des blocs (M_6O_{24}) , suivant c, par l'intermédiaire d'octaèdres (MO_6) , dans les composés $A_2M_7O_{18}$.

l'axe c. Suivant c, les blocs M_6O_{24} sont associés par l'intermédiaire d'octaèdres MO₆ d'axe ternaire parallèle à c (Fig. 3): l'ossature des composés $A_2 M_7 O_{18}$ peut donc être décrite par des feuillets $(M_6O_{15})_n$ alternant avec des couches d'octaèdres de composition $(MO_3)_n$, conduisant ainsi à un réseau octaèdrique tridimensionnel $(M_7O_{18})_n$ (Fig. 4a). Cette charpente présente une très grande analogie avec la structure pyrochlore: le réseau octaèdrique de cette dernière, décrit précédemment par Jona et al. (5) et plus récemment par Darriet et al. (6) consiste en une alternance de feuillets de type bronze hexagonal et de couches d'octaèdres d'axe ternaire parallèle à l'axe [111] de la maille cubique; ces couches qui s'étendent perpendiculairement à la direction [111] peuvent être formulées respectivement $(M_3O_9)_n$ et $(MO_3)_n$ (Fig. 4b), menant ainsi au squelette $(M_4O_{12})_{\mu}$ qui caractérise la maille rhomboédrique inscrite dans la maille cubique. Toutefois, les deux charpentes se distinguent par les dispositions relatives des octaèdres MO_6 appartenant aux couches $(MO_3)_n$. Dans les composés $A_2M_7O_{18}$, la géométrie des

feuillets $(M_6O_{15})_n$ impose une simple translation des couches $(MO_3)_n$ successives, suivant c. Il n'en est pas de même pour les pyrochlores dont les feuillets $(M_1O_9)_n$ permettent un glissement des couches $(MO_3)_n$ voisines; ces dernières sont décalées dans le plan (111) de la maille cubique de $a_c 6^{1/2}/6$, la périodicité suivant [111] étant alors réalisée à partir de trois feuillets $(MO_3)_n$. Dans les deux cas, pyrochlores AM_2O_6 et composés $A_2M_7O_{18}$, la charpente ménage des cavités de dimensions et de géométrie comparables, dans lesquelles sont situés les ions A de grande taille. Ces dernières sont délimitées par quatre hexagones gauches d'oxygènes, dont les centres forment un tétraèdre C_4 (Fig. 5). L'examen de l'arrangement de ces cages fait cependant apparaître une différence importante entre les deux types structuraux. Dans la structure pyrochlore, les "cages en O₁₈" mettent en effet en commun leurs quatre faces hexagonales (Fig. 5a), alors que dans les composés $A_2M_7O_{18}$, trois sur quatre de ces faces seulement sont mises en commun. La quatrième face, normale à l'axe c est en effet "obstruée" par trois atomes d'oxygène appartenant aux octaèdres de la couche $(M_6O_{15})_n$ conduisant ainsi à des "cages O₂₁" (Fig. 5b); il en résulte qu'au niveau d'une même cage, six tunnels d'axes dirigés suivant les côtés du tétraèdre C₄, s'entrecroisent dans le cas du pyrochlore, contre trois seulement au niveau des cavités en O₂₁ pour les composés $A_2M_7O_{18}$ (Fig. 5). Ces deux types de composés peuvent donc être décrits par des structures à "tunnels entrecroisés" dont les axes sont respectivement parallèles aux directions [110] de la maille cubique pour le pyrochlore, et [100], [010] et [110] de la maille hexagonale pour les phases $A_2M_7O_{18}$ (Fig. 6).

Les distances interatomiques et angles des liaisons des quatre composés sont rassemblés dans le Tableau IV. L'examen de ce tableau montre que les octaèdres MO_6 appartenant aux blocs (M_6O_{24}) $(M_{II} \text{ en } 6(i))$ sont notablement distordus. Les valeurs moyennes des distances anion-cation, sont tout à fait conformes aux rayons ioniques; les distances M-O, comprises entre 1,77 et 2,27 Å sont en bon

FIG. 4. (a) Structure des composés $A_2M_7O_{18}$: réseau octaédrique $(M_7O_{18})_n$. (b) Réseau octaédrique $(M_4O_{12})_n$ de la structure pyrochlore.

FIG. 5. Représentation schématique des cages O_{18} et O_{21} montrant les déformations "chaise" des hexagones O_6 et les directions des tunnels "hexagonaux". (a) Cage O_{18} des phases AM_2O_6 de type pyrochlore. (b) Cage O_{21} des phases $A_2M_7O_{18}$.

accord avec celles obtenues pour différents composés tels que KTiNbO₅ (7) (1,69–2,32 Å), BaTi₄O₉ (8) (1,77–2,32 Å), Ba_{6+x}Nb₁₄-Si₄O₄₇ (9) (1,84–2,13 Å), et $A_3M_8O_{21}$ (1, 2) (1,84–2,26 Å) dont les structures sont également caractérisées par des octaèdres MO_6 joints par les arêtes. La géométrie de ces octaèdres (Fig. 7a) est voisine de celle observée dans le cas des composés $A_3M_8O_{21}$ (1, 2). Nous retrouvons en effet pour les oxygènes du plan de base O_2-O_2 , $-O_1-O_1$, une distorsion analogue. Les composés $A_2M_7O_{18}$ se distinguent cependant des phases $A_3M_8O_{21}$ par une distorsion plus importante de ces octaèdres suivant c, et qui peut être due aux contraintes imposées par l'association, dans cette direction, des blocs M_6O_{24} par l'intermédiaire d'octaèdres M_1O_6 . Ces contraintes se retrouvent également dans la structure pyrochlore où elles sont alors compensées par la seule inclinaison des octaèdres des couches $(M_3O_9)_n$ par rapport au plan moyen de la couche.

Les octaèdres M_1O_6 , qui assurent la jonc-

FIG. 6. Disposition relative des tunnels "hexagonaux" dans les phases de types pyrochlore et $A_2M_7O_{18}$. (a) Projection sur le plan (110) de la maille cubique pyrochlore. (b) Projection sur le plan (110) de la maille hexagonale des composés $A_7M_7O_{18}$.

$A_2Nb_6TiO_{18} ET A_2Ta_6TiO_{18}$

TABLEAU IV

DISTANCES INTERATOMIQUES ET ANGLES CA	LCULÉS POUR LES COMPOSÉS $A_2 M_7 O_{18}^a$
---------------------------------------	---

		Rb ₂ Nb ₆ TiO ₁₈	Rb ₂ Ta ₆ TiO ₁₈	Cs ₂ Nb ₆ TiO ₁₈	Cs2Ta6TiO18
Octaèdres MO ₆				· · · · · · · · · · · · · · · · · · ·	
Distances (Å)					
<i>M</i> ₁ –O	(×6)	1,99(2)	2,07(2)	1,89(2)	2,06(3)
O ₍₃₎ -O ₍₃₎	(×3))	2 80(2)	2 02(2)	2 71(1)	1.04(1)
O _(3') -O _(3')	(×3)∫	2,00(2)	2,92(2)	2,71(1)	2,94(2)
O ₍₃₎ -O _(3')	(×6)	2,83(3)	2,95(4)	2,64(4)	2,88(5)
Angle (degrés)					
O ₍₃₎ -O _(3') -O ₍₃₎		59,2(6)	59,4(7)	61,7(6)	61,4(8)
Octaèdres des couche	s M6024				
Distances (Å)	• 2•				
<i>M</i> –O ₍₁₎	(×2)	1,90(2)	1,89(2)	1,89(1)	1,90(2)
$M - O_{(2)}^{(1)}$	(×2)	2,08(1)	2,07(1)	2,07(1)	2.05(1)
M O(2'')		2,27(2)	2,16(3)	2,13(2)	2,22(3)
$M - O_{(3)}$		1,83(2)	1,77(3)	1,95(3)	1,79(4)
$\mathbf{O}_{\mathbf{m}} - \mathbf{O}_{\mathbf{m}}$		2,57(2)	2,56(2)	2,57(1)	2,56(2)
O ₍₁₎ -O ₍₂₎	(×2)	2,69(2)	2,74(2)	2,75(1)	2,73(2)
O ₍₁₎ -O _(2'')	(×2)	3,15(3)	3,16(4)	3,12(3)	3,14(4)
O ₍₁₎ -O ₍₃₎	(×2)	2,89(3)	2,77(3)	2,96(3)	2,83(4)
$O_{(2)} - O_{(2')}$		3,29(2)	3,15(2)	3,14(2)	3,13(2)
$O_{(2)} - O_{(2'')}$	(×2)	2,83(3)	2,57(4)	2,56(3)	2,62(4)
O ₍₂₎ –O ₍₃₎	(×2)	2,59(3)	2,66(4)	2,73(3)	2,66(4)
Angles (degrés)					
$O_{(1)} - M - O_{(1')}$		85,2(9)	85,1(9)	85,3(7)	84,5(9)
$O_{(2)} - M - O_{(2')}$		104,7(7)	99,4(8)	98,9(7)	99,8(8)
O _(2'') -M-O ₍₃₎		153,1(7)	152,2(9)	149,5(7)	154,1(10)
Cages " AO_{21} " ($A = R$	b, Cs)				
Distances A-O (Å)					
A-O _(1')	(×3)	>4	>4	>4	>4
A-O ₍₁₎	(×3)	3,22(2)	3,23(2)	3,33(2)	3,36(2)
A-0(2)	(×3)	2,98(2)	3,20(3)	3,30(2)	3,30(3)
A-O ₍₃₎	(×6)	3,81(2)	3,79(1)	3,81(1)	3,79(2)
A-O _(3')	(×3)	3,71(2)	3,61(3)	3,51(2)	3,44(3)
<i>A</i> -O _(1'')	(×3)	>4	>4	>4	>4

^a Les écarts types sont donnés entre parenthèses.

tion entre les feuillets $(M_6O_{15})_n$ sont par contre presque réguliers (Fig. 7b). Il s'agit en fait d'antiprismes dont les distances O-O sont comprises entre 2,65 et 2,95 Å (Tableau IV); les distances M_1 -O qui varient entre 1,90 et 2,10 Å sont en bon accord avec les valeurs des rayons ioniques.

L'entourage des cations Rb^+ et Cs^+ (Fig. 7c), bien que voisin de celui observé dans les pyrochlores, présente cependant des différences notables. Dans les pyrochlores, les quatre hexagones d'oxygène, de forme chaise, qui constituent la cage O_{18} sont en effet équivalents et peuvent être considérés comme des antiprismes très aplatis, alors que dans la structure $A_2M_7O_{18}$, ces hexagones ont toujours la configuration chaise mais trois d'entre eux ne peuvent plus être considérés comme des antiprismes. Il en résulte pour les cations A des phases $A_2M_7O_{18}$ une coordinence (3 + (3 + 3)+ 6 + 3 + 3) caractérisée par 9 distances A-O comprises entre 3 et 3,7 Å, 6 distances égales

FIG. 7. Géométrie des différents sites métalliques dans la structure des composés $A_2M_7O_{18}$. (a) Octaèdre $M_{11}O_6$ des blocs (M_6O_{24}). (b) Octaèdre M_1O_6 associant les blocs (M_6O_{24}). (c) Polyèdre de coordination des cations Rb⁺ et Cs⁺.

comprises entre 3,75 et 3,85 Å, et 3 + 3distances supérieures à 4 Å, alors que le positionnement du cation A au centre de la cage O₁₈ pyrochlore, conduirait pour ce dernier à une coordinence 6 + 12 avec 6 distances A-O voisines de 3 Å et 12 distances voisines de 3,70 Å.

Les distances A-O relativement élevées, notamment dans le cas du rubidium, posent comme pour les pyrochlores AM_2O_6 le problème de la localisation des ions A dans la cage O_{21} . Il n'est pas possible de trancher ici, compte tenu de la valeur du facteur B_{Rb} voisine de 3 Å², entre une agitation thermique et un "éclatement statistique" des positions correspondant à Rb⁺. Une étude des composés du thallium actuellement en cours devrait permettre de préciser ce dernier point.

Discussion

L'influence de la nature des ions A et B sur la stabilité de la structure $A_2M_7O_{18}$ n'a pas été étudiée de façon systématique. Cependant, différents essais de substitution couplée sur les cations des sites octaédriques ont été réalisés: remplacement total du niobium ou du tantale par Sb^V, puis par le couple W^{VI}-M' (M' = Ti^{IV}, Cr^{III}, Fe^{III}, Ni^{II}, Zn^{II}, Mg^{II}), substitution du titane par le couple Nb^V (ou Ta^V)-M'' (M'' = Cr^{III}, Fe^{III}, Ni^{II}, Zn^{II}, Mg^{II}). Dans les conditions de synthèse décrites précédemment, nous n'avons jamais observé la formation, pour ces éléments, des structures $A_2M_7O_{18}$. En

raison des tailles des éléments de substitution, très voisines de celles du tantale, niobium et titane, il est permis de penser que la structure électronique des éléments des sites octaédriques joue un rôle important dans la stabilité de ce type structural. La structure $A_2M_7O_{18}$ n'a en effet été obtenue jusqu'ici que pour des éléments M caractérisés par une structure électronique externe d⁰. Un essai de remplacement total du titane par le zirconium a également échoué: il semble donc que la taille du cation joue également un rôle dans la stabilité de la structure. Ces résultats distinguent ces composés des pyrochlores AM_2O_6 pour lesquels de nombreuses substitutions couplées sur les sites octaèdriques ont été observées (10-12). La difficulté de synthèse de ce type de phases, est naturellement liée à la nature des blocs M_6O_{24} qui impliquent une distorsion notable des octaèdres; elle ne peut pas être toutefois imputée uniquement à la présence de ces blocs comme le montrent les résultats obtenus dans le cas des phases $A_3M_8O_{21}$ (1, 2). Il est probable que le mode d'association des blocs M_6O_{24} , qui introduit des distorsions des octaèdres differentes de celles observées pour les phases $A_3M_8O_{21}$, joue un rôle non négligeable dans la stabilité de la structure $A_2M_7O_{18}$. Comme pour les pyrochlores AM₂O₆, l'existence de ces composés est conditionnée par la présence d'ions A de grande taille. Nous n'avons cependant pas obtenu par synthèse directe à partir des oxydes les composés homologues du potassium, alors

que les pyrochlores $KMWO_6$ et $KMWO_6 \cdot H_2O$ ont été aisément synthétisés (13, 14).

L'analogie structurale de ces composés avec les pyrochlores laisse entrevoir dans le cas du thallium dont l'étude est en cours, un comportement particulier. La possibilité d'existence d'une non-stoechiométrie sur les ions A, tels que Tl^I ou Pb^{II}, caractérisés par un doublet solitaire doit donc être envisagée. Ces premiers résultats ouvrent par ailleurs une voie dans l'étude d'une nouvelle famille de composés de structure intermédiaire entre la structure pyrochlore et celle de $A_2M_7O_{18}$, et de formulation générale $(AM_6O_{15})_n (AM_3O_9)_{n'} (AMO_3)_{n''}$. Au cours de ce travail, nous avons eu en effet connaissance d'une communication relative au niobate $Tl_8Nb_{22}O_{59}$ (15), dont nous pouvons décrire l'ossature comme résultant de l'intercroissance des deux structures limites. L'existence, dans cette nouvelle série structurale, de cavités importantes, liées entre elles par des "tunnels entrecroisés" pose le problème des propriétés d'échanges cationiques et par suite, des propriétés de conduction ionique de ces phases.

Bibliographie

- 1. D. GROULT, J. M. CHAILLEUX, J. CHOISNET, ET B. RAVEAU, J. Solid State Chem. 19, 235 (1976).
- 2. D. GROULT, J. M. CHAILLEUX, B. RAVEAU, ET A. DESCHANVRES, *Rev. Chim. Miner.* 14, 1 (1977).
- B. M. GATEHOUSE, J. Less Common Metals 50, 139 (1976).
- 4. A. MAGNELI, Acta Chem. Scand. 7, 315, (1953).
- 5. F. JONA, G. SHIRANE, ET R. PEPINSKY, *Phys. Rev.* 98, 903 (1955).
- 6. B. DARRIET, M. RAT, J. GALY, ET P. HAGENMULLER, *Mater. Res. Bull.* 6, 1305 (1971).
- 7. A. D. WADSLEY, Acta Crystallogr. 17, 623 (1964).
- D. H. TEMPLETON ET C. H. DAUBEN, J. Chem. Phys. 32, 1515 (1960).
- 9. D. M. EVANS, ET L. KATZ, J. Solid State Chem. 8, 150 (1973).
- 10. G. LE FLEM ET R. SALMON, C.R. Acad. Sci., C 271, 1182 (1970).
- 11. C. MICHEL, D. GROULT, ET B. RAVEAU, Mater. Res. Bull. 8, 201 (1973).
- 12. M. HERVIEU ET B. RAVEAU, C.R. Acad. Sci.C 271, 1568 (1970).
- 13. D. BABEL, G. PAUSEWANG, ET W. VIEBAHN, Z. Naturforsch. B 22, 1219 (1967).
- 14. B. RAVEAU ET J. C. THOMAZEAU, C.R. Acad. Sci. 266, 540 (1968).
- M. GASPERIN, Réunion Annuelle de l'Association Française de Cristallographie, Caen, juin 1976, Communication orale.